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8.1 Introduction

The large-scale terrestrial climate is well-known to be sensitive to small changes
in the average albedo of the earth-atmosphere system. Sensitivity estimates vary,
but typically a 10% decrease in global albedo, with all other quantities held fixed,
increases the global mean equilibrium surface temperature by 5◦C, similar to the
warming since the last ice age, or that expected from a doubling of CO2 (e.g., Caha-
lan and Wiscombe, 1993). Yet not only is the global albedo of 0.31 only known to
≈ 10% accuracy1 but current global climate models often do not predict the albedo
in each gridbox from realistic cloud liquid water distributions; they normally tune
the liquid until plane-parallel radiative computations produce what are believed to
be typical observed albedos. The inability of global climate models to compute the
1 Estimates of global albedo range from 0.30 to 0.33, or 3 out of 31 ≈ 10%, (e.g., Kiehl and

Trenberth, 1997).
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albedo is due to their inability to predict the microphysical and macrophysical prop-
erties of cloud liquid water within each gridbox, and their reliance on plane-parallel
radiative codes. As Stephens (1985) has emphasized, the mean albedo of each grid-
box depends not only on the mean properties of clouds within each box, but also
upon the variability of the clouds, which involves not only the fractional area cov-
ered by clouds, but also the cloud structure itself. During recent years many climate
models began to carry liquid water as a prognostic variable, e.g., Sundqvist et al.
(1989) and Tiedtke (1996). It is important to treat cloud radiation and cloud hydrol-
ogy consistently, which requires that cloud parameterizations become dependent on
the fractal structure of clouds. Radiative properties of singular multifractal clouds
have been previously studied (e.g., Cahalan, 1989; Cahalan and Snider, 1989; Love-
joy et al., 1990; Gabriel et al., 1990; Davis et al., 1990). Here we shall show how
radiative properties of marine stratocumulus boundary-layer clouds, and specifically
area-average albedo of these clouds, depend on their structure. The central role of
this cloud type in maintaining the current climate was clarified and quantified in
Ramanathan et al. (1989).

The dependence of average albedo on cloud structure has been found to be es-
pecially important in the case of marine stratocumulus, a major contributor to net
cloud radiative forcing. Computations based on observations of California stratocu-
mulus during the First International Satellite Cloud Climatology Project (ISCCP)
Regional Experiment (FIRE) have shown that stratocumulus have significant fractal
structure, and that this “within-cloud” structure can have a greater impact on aver-
age albedo than cloud fraction (Cahalan and Snider, 1989; Cahalan et al., 1994b,a).
These studies employed a “bounded cascade” model to distribute the cloud liquid,
defined in terms of two cascade parameters: f , the difference in cloud liquid frac-
tions between two segments of the full cloudy domain being considered, and c, the
difference of liquid fractions at the next smaller scale (within each segment) divided
by f .2 Parameters c and f are empirically adjusted to fit the scaling exponent of the
power spectrum of liquid water path (W ), β(c) ≈ 5/3, and the standard deviation
of log W , � (f), respectively. In order to isolate the effects of horizontal liquid water
variations on cloud albedo, it is convenient to assume that the usual microphysical
parameters are homogeneous, as is the geometrical cloud thickness. In order to sim-
plify comparison with plane-parallel clouds, the area-averaged vertical optical depth
is kept fixed at each step of the cascade. The albedo bias is then found as an analytic
function of the fractal parameter, f , as well as the mean vertical optical thickness,
τv, and sun angle,

�
0. For the diurnal mean of the values observed in FIRE (f ≈ 0.5,

τv ≈ 15, and
�
0 ≈ 60◦) the absolute bias is approximately 0.09, nearly 15% of the

plane-parallel albedo of 0.69. Diurnal and seasonal variations of cloud albedo bias
have been determined from observations during the Atlantic Stratocumulus Transi-
tion Experiment (ASTEX) and compared to the FIRE results (Cahalan et al., 1995).
2 Bounded cascades were first introduced in Cahalan et al. (1990), and their scaling properties

studied in Marshak et al. (1994). For a description of bounded cascades in terms of f and
c, see the discussion following (8.2) below.
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The goal of this chapter is to show how these results for the mean albedo of
bounded cascade clouds, derived in the references cited above, may be applied to
parameterizing the albedo of such clouds in terms of the plane-parallel albedo of a
cloud having an “effective optical thickness” which is reduced from the mean thick-
ness by a factor χ(f) which depends only on the fractal parameter f , or equivalently

� (f), and not on the mean cloud properties. This “effective thickness approxima-
tion” (ETA) is a special case of the more general “independent pixel approximation”
(IPA), sometimes referred to as the “independent column approximation” (ICA) es-
pecially for gridded climate models. The key assumption of any IPA (or ICA) type
approximation is the neglect of horizontal photon transport (see Chap. 12). In ad-
dition, it depends only on 1-point cloud probability distributions, not on the spatial
arrangement or correlations of individual cloud elements. On the other hand, knowl-
edge of the accuracy of any IPA approximation depends on three-dimensional (3D)
radiative transfer (i.e., with net horizontal fluxes) as well as on the spatial (typically
fractal) cloud structure. In this chapter, though we compare the IPA/ICA with 3D
radiative transfer as is done in other chapters, the primary purpose is to compare the
IPA with the much simpler ETA. In particular, we use a simple fractal “bounded cas-
cade” model to (1) motivate the ETA; and (2) determine the accuracy of the ETA by
comparing it to the full IPA, using cloud parameters typical of marine stratocumulus.
Moreover, some analytic results for bounded cascades are generalized and simpli-
fied in two appendices. In the “Further Readings” section at the end, we point the
reader to simple alternatives to the ETA, each of which have particular advantages
and points of view. We feel that each approximation is helpful insofar as it lends
some insight into real clouds, which are far more complex than any of our mathe-
matical idealizations, as anyone can discover who takes the opportunity to study the
amazing variety of real cloud systems.

In the following, we first define some terms in Sect. 8.2. Then Sect. 8.3 shows
that the IPA provides estimates of the plane-parallel albedo bias accurate to about
1% for bounded cascade clouds, and Sect. 8.4 applies the IPA to show that the to-
tal absolute bias reaches a maximum of about 0.10 during the morning hours, when
the cloud fraction is nearly 100%. These two sections are primarily summaries of
results from Cahalan et al. (1994b) and Cahalan et al. (1994a), although there a 1D
cascade was employed, while a here a 2D cascade is applied. Section 8.5 gives the
main result, that under certain commonly-observed conditions the albedo is approxi-
mately the plane-parallel albedo at a reduced “effective optical thickness” τeff ≡ χτv,
where the reduction factor χ decreases with f , or equivalently � (f), approximately
as 10−1.15 � 2 (see Fig. 8.5 and (8.B.12)), independently of the mean vertical optical
depth, τv. The accuracy of this approximation is given as a function of both f and the
mean thickness. The results are summarized and their limitations briefly discussed
in Sect. 8.6. Appendix 8.A shows that all moments of a bounded cascade may be
obtained by considering only the second moment as a function of the fractal parame-
ter. This generalizes expressions for the second and third moments given in Cahalan
et al. (1994a), and allows the lognormal behavior in the singular limit to be explic-
itly exhibited (see also Cahalan, 1994). Appendix 8.B gives expressions for χ(f)
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and � (f) as power series in f with coefficients depending on c, and evaluates the
coefficients for the case of a β(c) ≈ 5/3 wavenumber spectrum.

8.2 Definitions

Many general circulation models (GCMs) are now predicting mean cloud liquid wa-
ter in each gridbox, not merely diagnosing it from other quantities. The cloud albedo
could potentially also be accurately predicted, if cloud liquid could be accurately dis-
tributed within each gridbox. Efforts are underway to improve the treatment of cloud
distributions in global models, so that simulated clouds can respond more realisti-
cally to climate change. The hope is that average cloud liquid in each gridbox will be
accurately predicted, and that the resulting cloud albedo will be correctly computed
from this, and other average cloud parameters. It is important to recognize, however,
that mean cloud parameters are insufficient to compute the mean albedo. The mean
albedo also depends, at a minimum, on the deviations of the liquid water from the
mean, for instance, on the mean and standard deviation of the logarithm of the liquid
water. We demonstrate this here and in the next using the bounded cascade model.

The schematic in Fig. 8.2 shows three approaches to distributing a prescribed
amount of liquid water in a given vertical level of a GCM gridbox. In (a) it is uniform
over the whole area, and thus the albedo may be computed from plane-parallel theory,
and depends only on the average optical thickness, effective particle radius, and so
on. In (b) the cloud is assumed to cover only a fraction of the area, is somewhat
thicker in order to contain the same total liquid, but is still assumed to be uniform
on that so-called “cloud fraction.” In this case the mean albedo of the gridbox is
assumed to equal the area-weighted average of a “cloud albedo” and a “clear-sky”
albedo. Finally, in (c) the cloud covers the same cloud fraction as in (b), with the same
mean parameters, but is assumed to have a non-uniform structure which depends on
one or more “fractal parameters.” The cloud fraction and the fractal parameters are
assumed to depend on geographic region, season, and time of day.

As a measure of the impact of cloud fraction and fractal parameters on the aver-
age albedo, we define the “absolute plane-parallel albedo bias”

�
Rpp, as the mean

albedo computed in case (a) minus that in case (c). This may be expressed symboli-
cally as:

�
Rpp = Rpp − [AcRf + (1 − Ac)Rs], (8.1)

where Rpp is the plane-parallel reflectivity, Rf is the mean reflectivity of the fractal
cloud, Rs is the mean clear-sky reflectivity, and the same total liquid water is used in
all cases. The relative plane-parallel albedo bias is the absolute bias divided by Rpp.
To avoid confusion, the absolute bias is always given as a fraction, while the relative
bias is given in percent. Since the simple uniform cloud fraction model shown in
Fig. 8.2b is currently widely employed, it is convenient to split the total plane-parallel
bias into the difference between (a) and (b), plus the difference between (b) and (c).
Symbolically:


